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Inverse geometric problems of the anisotropic theory of elasticity for bodies with cracks of arbitrary configuration are investigated 
using a linear approach. Questions of the uniqueness of solution of the inverse problems that arise are studied, and effective 
schemes are constructed for solving them by a combination of the boundary element method and a regularized iteration procedure. 
The example of the reconstruction of a rectilinear crack in an orthotropic layer is examined. © 2004 Elsevier Ltd. All rights 
reserved. 

The development of effective mathematical models of the diffraction of elastic waves by cracks is an 
extremely pressing problem in the development of ultrasonic methods for revealing internal and surface 
defects (cavities and cracks) with a subsequent determination of their characteristic dimensions and 
configuration from the displacement field measured on the boundary of the body. If the size of the defect 
is commensurate with the wavelength of the probing field or less than it, the use of reliable mathematical 
models becomes particularly important by virtue of the fact that, in the case, the field recorded on the 
body surface changes very little when there is a defect present when solving the inverse geometric 
problems of the theory of elasticity that arise in this case, a strict approach is necessary, based on a 
fairly accurate solution of the corresponding boundary-value problems of the dynamic theory of elasticity. 
The most popular model of a crack is currently the mathematical cut, in which the displacements undergo 
finite jumps on a certain surface, and the crack surfaces are open and do not interact [1]. This concept 
historically stems from formulations for static problems of the theory of elasticity, and here the jumps 
are determined either from the condition for there to be no stresses on the crack surfaces (within the 
framework of the superposition principle) from the condition for the normal stresses to be constant 
on them. 

One of the most effective methods of investigating direct and inverse problems of elastic bodies with 
defects under conditions of steady vibrations is the method of reduction to systems of boundary integral 
equations (BIEs), which enables the dimension of the direct problems to be reduced and enables a system 
of non-linear operator equations for solving the inverse problems to be formulated. An approach of 
this kind for defects of the cavity type in an unbounded medium and when there is a rectilinear boundary 
was proposed earlier (see, for example, [2, 3]). As regards the procedure for determining the configura- 
tion of cracks in a solid body from information on physical fields at the boundary of the body, in recent 
years investigations have been carried out in the following three areas: 

(1) a study of inverse problems for Laplace's equation and the modelling of the procedure for 
identifying the crack by studying the features of the structure of either the thermal or the electrostatic 
fields in bodies with defects [4-8] using a certain "non-reciprocity" functional; 

(2) the reconstruction of a crack in an infinite medium from the radiation patterns of elastic waves 
(similar to approaches described earlier [2]) in the far zone [9-11] and the formulation of systems of 
BIEs of the first kind; 

(3) a study of the positioning of cracks situated at the interface of two elastic materials [12], combining 
a procedure for solving the direct problem by the finite element method and solving the problem of 
field continuation. 

Within the framework of the isotropic theory of elasticity, the BIE method was used to solve a broad 
class of problems of the vibrations of elastic bodies with cracks without the interaction of the surfaces 
of the crack. Methods have been developed [13] that enable the vibrations of bodies with a single crack 
to be studied, as well as the vibrations of bodies with a system of parallel cracks in a half-space of a 
layer, and which enable the solution of integral equations to be obtained in semi-analytical form, without 
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requiring lengthy computing time. However, if the crack is inclined to the rectilinear boundary, or is 
not a plane crack, the only effective means of investigating the direct and inverse problems of the crack 
theory is the general BIE method, and, in the case of a numerical realization, the boundary element 
method based on it. 

Note that, in many cases, to construct an adequate model of the reflection of elastic waves from a 
crack, account must be taken of the anisotropy possessed by many actual structural materials and alloys, 
and also rocks, which considerably complicates the calculation of the wave fields reflected from the 
defect• 

1. FORMULATION OF THE PROBLEM 

Consider the steady vibrations, with frequency ¢0, of an elastic anisotropic body Vbounded by a piecewise- 
smooth surface S = S1 u $2. The vibrations are caused by a load Pi applied to parts of the boundary 
$20 C $2, while a part of the boundary $1 is restrained. We will assume that the body Vis weakened by 
a crack on the smooth internal bilateral surface Sff at which the components of the displacement vector 
undergo jumps )~i = lgi l S -  ~ - Ui]So; we will also assume that, during the vibrations, the crack surfaces 

do not interact. The boundary-value problem has the form 

2 
Oij, j + pO) U i = 0 ,  I3/j = CoklUk, l (1.1) 

~ijnjls2 = Pi, Uils I = O, ~ijn~ s~ = 0 (1.2) 

where the loads Pi are non-zero o n  $20 .  Here, czjkl are tensor components of the constants of elasticity, 
satisfying the normal conditions of symmetry and positive determinacy, and n .--* are the components of 

• . 4 .  . • J .  • • 

the unit vectors of the normals to the surfaces Sg. The inverse problem of ldentlfylng the crack consists 
of finding the form of the surface S~- from the prescribed (measured) displacement field on the part 
of the boundary SZl free from loads ($20 n $21 = ~)  from the condition 

Uils2, = gi  ( 1 . 3 )  

Remark. When the interaction of the crack surfaces are taken into account, it is necessary, in the 
boundary conditions on the crack, to allow for the process of the crack surfaces closing up during 
vibrations; however, in this case the direct problem immediately becomes non-linear. These conditions 
can be formulated in the form of the inequality Zn = )Qn}- _ 0, where, if the inequality is strict, we also 

+ = 0. But if, on some section of the crack, Zn = 0 (the crack surfaces are have the condition (~ijnj [S~ 
+ - 

closed up), then, along this section of the crack, the condition (Yijnj nj < 0 must be satisfied, which 
corresponds to its compression. Here it turns out that, by virtue of the non-linearity of the boundary 
conditions, it is not possible to study steady vibrations, and it is necessary to examine the problem in 
a non-stationary formulation. 

2. THE UNIQUENESS OF THE SOLUTION OF THE PROBLEM OF 
RECONSTRUCTING THE CRACK 

As is will known, uniqueness is a key problem in investigating inverse geometric problems. When a body 
Vis weakened by a cavity, the scheme of proof of the uniqueness theorem is similar to schemes of proof 
in the acoustic case [2]. Note that uniqueness theorems were formulated within the framework of the 
first [4] and second areas [7, 9]. In the case of cracks in a bounded anisotropic elastic body, the problem 
of proving the uniqueness of its identification requires different mathematical tools. 

We will formulate the conditions which ensure the uniqueness of the solution of the inverse problem 
of reconstructing the surface Sff. 

Theorem• Suppose that, under the conditions of the formulation of inverse problem (1.1)-(1.3), the 
data of (1.3) are known in a certain segment of variation of the frequency co ~ [c01, 032] in the non- 
resonance region. Then the problem of finding the surface S~ has a unique solution in the class C a of 
smooth surfaces with a smooth edge that are contained strictly within the volume V. 

We will prove this assertion assuming that two solutions of the inverse problem exist, characterized 
by displacement vectors with components u~ 1) and u~ 2) and surfaces S~ 1) and S(02). 
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We will introduce into consideration a vector with the components vj = b/l.1) - U~ 2) and a tensor with 
the components Tij = C i j k l V k ,  l. Homogeneous equations of motion 

Tij, j + p0)2Vi = 0 (2.1) 

exist in the region V12 = V(S~ 1) u S(02)), and homogeneous boundary conditions are 

Vi[s, = O, Tonyls 2 = O, Vi[s21 = 0 (2.2) 

Then, for an elliptical operator of the theory of elasticity (2.1), as shown earlier [14], we actually have 
a Cauchy problem with zero data o n  $21 and, by virtue of the uniqueness of its solution, vi = 0 throughout 
the region V12 up to its boundary; in particular 

(2) 
Tiyn j s~o2) = 0 (2.3) 

Below we will examine two cases. 

The case S~ 1) n S(o 2) = Q. We will introduce into our consideration the region V(o 2) C V containing 
S(o 2) strictly within it, such that V~ 2) ~ S~ 1) = ~.  Within this region, the equations of motion 

(l) _-  2 (1) _ ( l )  (1) 
ffij. j + p w  U i -- O, oij = CijklUk, l (2.4) 

are satisfied, and also the condition 

(1) (2) 
~ij nj is~o,, = 0 (2.5) 

for all 0) ~ [0)1, 0)2] by virtue of relation (2.3). Since the solutions of the elliptical system (2.4) u} 1) are 
analytical functions of the coordinates (and the frequency 0)) [15] in the region M = ~2)[0)1, 0)2], then, 
by virtue of the fact that condition (2.5) is satisfied on a certain hypersurface S~2)[0)1, 0)2] lying within 
M, the function u} a) is identically equal to zero in the region ~2) and continues to be analytically zero 
up to the boundary $21 , which contradicts boundary condition (1.3). 

The case S~ 1) c~ S(02) ~ 0 .  In this case the region V(02) C V is selected in such a way that it contains 
t h e  part S} 2) C S~ 2), w h e r e  S~ 2) u~ S(02) = 0 .  

The subsequent reasoning follows that of the first case. 
The theorem is proved. 

3. F O R M U L A T I O N  OF T H E  S Y S T E M  OF O P E R A T O R  E Q U A T I O N S  

At the first stage of investigating the problem of identification, a solution is constructed for the direct 
problem of calculating the wave fields in an elastic body weakened by a crack of known configuration 
S~-. For this, we use the main ideas of potential theory, which enables us to reduce the initial boundary- 
value problem to a system of integral equations in terms of the jumps of displacements on the crack 
that were introduced above. The most effective approach involves first reducing the initial problem (1.1), 
(1.2) for a body with a crack within the framework of the theory of dislocations [16] to a system of 
equations of the theory of elasticity with fictitious mass forcesj~ = -[Cijkln{zl6(~)] j for a homogeneous 
body V. Then, on the basis of the reciprocity theorem for an elastic anisotropic bo~ly, the field of elastic 
displacements within V(~ ~ V) can be found by means of Somigliana's formulae [1] 

S S V 

w h e r e  ulm)(x, ~) and (y~m)(x, ~) a r e  respectively the fundamental and singular solutions for an anisotropic 
medium; their explicit respresentations cannot be constructed, but it is possible to construct their integral 
representations, which is quite sufficient for the numerical implementation of the boundary element 
method (as was pointed out, for example, in [17]). 
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Taking into account the expression for 3} and selecting in Eq. (3.1), as  u~m)(x, ~), Green's matrix 
function for the operator of the anisotropic theory of elasticity (1.1) with the boundary conditions 

uOi(m)( x, ~) S, = O, (yOij(m)(x, ~)nj[s2 -- 0 (3.2) 

we obtain the following representation for calculating the displacement fields inside the body V 

0(m) Um(~) = USm(~) + IOkl (x, {))~l(x)nk(x)dSx 

So 
(3.3) 

USm(~) = I pi(x)U°i(m)(x' ~)dSx 
$2o 

where u~(~) is the field in the medium without a defect (the reference field). If the expansion functions 
are known, then, using formulae (3.3), it is possible to calculate the displacement field throughout the 
region, including on the boundary $2. To determine the functions of the crack opening by the normal 
method, a system of boundary equations is formulated by satisfying the boundary conditions on the 
crack (1.2): 

K)~ = Ikj t(x,y))~,(x)dS x = Fj(y),  y ~ S O (3.4) 

s; 

The kernels kit (x,y) are hypersingular and have a second-order moving singularity, and the corresponding 
integrals are understood in the sense of a Hadamard finite value [18]; the functions Fj(y) are expressed 
in terms of the reference displacement field. 

Using relations (3.3) and (3.4) and the solution of the direct problem, at the second stage of the 
investigation, in the inverse problem, taking into account condition (1.3), a system of operator equations 
is formulated in Zt(x) and S~ 

m = 1 , 2 , 3 ,  ~ $21 I kOml(X, {))~tdSx = g* (~ )  = gm(~)--USm(~), 
+ So 

(3.5) 
ffkjl(x,y))~t(x)dS x = Fj(y),  j = 1, 2, 3, y e S o 

+ So 

where k°ml(X, ~) = 13°l(m)(x, {)nk(X ). The integral operators in the system of BIEs (3.5) extend only to 
the boundary of the crack, which significantly reduces the volume of computational work when solving 
both the direct and the inverse problem. If the fundamental solutions of the corresponding operators 
occur as kernels, the system of BIEs contains a number of intermediate unknowns, in particular the 
displacements on the body surface. Unfortunately, the construction of Green's functions, even in the 
form of integral representations, only encounters no difficulties for canonical regions in the form of a 
layer, an infinite cylinder, and a half-space. 

Note that the system of operator equations (3.5), along with hypersing~+ lar operators, also contains 
Fredholm operators of the first kind with smooth kernels, since $21 o S O = Q~. By virtue of this, the 
problem of finding S~ from system (3.5) is ill-posed and, consequently, unstable to small disturbances 
of the prescribed functions gj (x), which is characteristic of inverse geometric problems. Because of this, 
the procedure for a numerical investigation of system (3.5) requires regularization [19] in a particular 
form. 

4. A METHODS OF SOLVING THE PROBLEM OF IDENTIFICATION 

The most effective scheme for a numerical analysis of non-linear system (3.5) consists of two stages, 
as described below. 

Stage 1. In the first stage, the method for finding the simplest configuration S~- is based on using the 
principle of regularization on compact sets, in particular on the preliminary parameterization of this 
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surface by describing it with a finite number of parameters ck. For example, for a plane elliptical crack, 
there are seven parameters of this type (the coordinates of the centre, the components of the normal 
vector, and the semi-axes of the ellipse); for a tunnel crack perpendicular to the boundary of the layer 
there are, in all, two parameters of this kind: the length of the crack and the distance from the nearest 
tip of the crack to the boundary of the layer. Note that, as the parameters to be determined, it is best 
to select certain invariant characteristics of the crack that are not related to the selection of the system 
of coordinates, such as the area, the length of the crack contour, the distance to the free boundary, etc. 
The method for finding these parameters is based on a discrete representation of the integral operators 
in system (3.5) in terms of the nodal values of the functions of the crack opening and on determining 
the parameters ck from the condition for a minimum of the non-quadratic discrepancy functional @(c,&) 
generated by the second relation of (3.5). In finding the minimum discrepancy functional, iteration 
schemes are usually employed. 

The implementation of this approach requires repeated solution of the direct problem (l.l), (1.2), 
which is carried out using the simplest version of the boundary element method. In this case, the solution 
of the system of hypersingular equations (3.4) reduces to solving a system of linear algebraic equations 
in the nodal values of xlq (with fixed values of the parameters ck) 

N 

2 AjlqpXlq = Fjpv P = 172, ‘e.9 N (4-l) 

q=l 

Ajlqp = I kjl(x9 Ypldsx, Fjp = Fj(Yp) 

s, 

q= & is the approximation of the surface SG by a polyhedron with triangular faces, andy, is the centre 
of gravity of the triangle S, (in the plane case n = 2, the contour of the crack is approximated by an 
N-section broken line, and yP is the middle of the pth link). 

Stage 2. In the second stage, the crack configuration is determined more precisely using the 
linearization method. The system of operator equations is linearized in the vicinity of the simplest 
configuration found in the first stage, with subsequent discretization using a combination of the ideas 
of the boundary element method and Tikhonov’s regularization method [19]. 

We will find the surface Si on a set of smooth surfaces of class C2, star surfaces with respect to a 
certain centre, where we will assume that the boundary 3s; of the surface Sg is a smooth curve. We 
will map Si onto a segment of a unit sphere Q, which is specified by the equation x = R(u), 
u = (~1, ~2) E & I .  

Suppose the vector function Ra(u) corresponds to a plane round crack found in the first stage. We 
will linearize the first of the integral equations of system (3.5) in the vicinity of &(u), introducing 
z(u) = R(u) - Ra(u) = {zj(U)), j = 1,2,3 and using the following expansions 

Gfjm’(R(u), 5) = O~j”‘(Rl)(u>t 5) + o~~,~)(RIJ(u)T 51)Zj("> + o(Z(u)) 

Xl(R(u)) = XICRl)Cu)) + Xl, j(R()(U)>Zj(u> + o(z(u)) (4.2) 

&edS, = %JRso, 1 (u%,,,(u) + R,, J4zt,z(u) + 40,2(4~,, l(u) + 4W4Nd@42 

(here akst are the Levi-Civita symbols). The linearization procedure gives the following system of 
Fredholm integral equations of the first kind with smooth kernels 

L,,,jzj = G,, m = 1,2,3 

(4.3) 

Here G&J = t%(5) -8&J, and d#.) corresponds to the configuration R,(u). 
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After solving system (4.3) by the method of regularization and finding the f u n c t i o n s  zj(ul, u2) , it is 
possible to change to a new crack configuration and then construct a linearization in its vicinity using 
relations (3.4) and (4.3). 

5. N U M E R I C A L  E X P E R I M E N T  

To illustrate the proposed approach, we will examine the problem of reconstructing a transverse crack 
in an orthotropic strip of thickness H with a rigidly restrained lower face. Vibrations in the strip are 
caused by a normal load applied to its upper face in a finite interval, while the remainder of the boundary 
is load-free. The formulation of the problem of the radiation condition is closed, in the formulation of 
which use is made of the principle of limit absorption [20]. The coordinates of the crack tips are 
determined from the known displacement field on part of the free boundary. 

The representation of the wave field in the strip was found by constructing Green's matrix function 
for the strip with boundary conditions of type (3.2), which is constructed by means of the Fourier integral 
transform and can be represented in the form of single integrals over a certain contour ~ in the complex 
plane, selected in accordance with the principle of limit absorption. The system of hypersingular integral 
equations (3.3) in the jumps ;(j in the case considered of a transverse crack splits into two independent 
equations 

b 

I)~j(~3)kjj(~3, x 3 ) d ~ 3  = Fj(x3), j = 1, 3, X 3 E [a ,  b] ( 5 . 1 )  

a 

where their kernels can be represented in the form 

fD#(a,, ~3, X3)d(x (5.2) kjj(~3, x3)  = j D ( o ~ I )  1 

and Djj(o~, ~3, x3) and D(O~l) are known functions of their arguments, which on account of their length 
are not given here. Unlike the case examined earlier [13], the kernels kij({3,x3) are non-difference kernels 
but have a moving singularity at x3 -- ~3- 

Boundary integral equations of the form (5.1) and (5.2) were solved using the boundary element 
method, which, for these types of equations, was described earlier [21]. The displacement field calculated 
from representation (3.3) on the upper face of the layer at points x~ served as the initial data when 
solving the inverse problem. 

The inverse problem consisted of finding the crack tips a and b from the known displacements 0j U k , 
specified at the points x on part of the boundary x3 = H, and reduced to the simultaneous solution of 
the system of boundary integral equations (5.1) and minimization of the corresponding discrepancy 
functional 

¢(a,b)-- Y 
J 

In the numerical realization of the proposed approach, the boundary integral equations were reduced 
to a system of non-linear equations in the unknown parameters of the crack a and b and the nodal values 
Z~. An iteration process was constructed for determining the values of a and b, and here either an internal 
crack of maximum size or the crack configuration to which the values of the parameters which give the 
minimum discrepancy functional correspond when it is on a certain uniform grid within the search 
triangle 0 < a < b < H is selected as the initial approximation. 

As an example of the reconstruction, below we give the results of calculations when solving a model 
problem for an orthotropic strip of austenite steel weakened by a transverse crack, the coordinates of 
the tips of which are 00 = a/H = 0.7, 01 = b/H = 0.95 with different values of dimensionless frequency 

= H 0 )  4 p/C33 E [3.3, 5.3], when there are a different number of radiating modes in the layer. Note 
the effectiveness with which the crack tips to be identified can be found, as illustrated in Fig. 1, which 
shows graphs of the reconstruction of the coordinates of the crack (00, 01) as a function of the number 
of iterations n for different values of the parameter ~c. The results of numerical experiments using the 
proposed procedure showed that, for low and medium frequencies, to determine only the size of the 



The determination of the configuration of a crack in an anisotropic medium 169 

01=0"95 ~ - ~ . . . , , ~ . . a  e - l e  - 
0.9 

--o-- 3.3 
g ~ 4 . 3  

0.8 x 5.3 

0 o = 0 . 7  ¢ 

0 . 6 /  

0.5' 
0 2 4 6 

Fig. 1 

8 n 

deepened crack with an error of  the order of 1%, 5-8 iterations are sufficient, while identification of 
the coordinates of its ends requires 4-12 iterations. 

It  should be noted that, when the size of the crack is reduced compared with the wavelength, the 
discrepancy functional has multiple local minima, and in this range of frequencies it is necessary to use 
finer means of minimization. For a near-surface crack, when the frequency of the vibrations decreases, 
the resolution of the method deteriorates. After  a certain number  of iterations, the calculated values 
of the parameters  a and b are observed to approach the accurate values slowly; when the vibration 
frequency and the number  of radiating modes increase, the rate of convergency of the proposed metho d 
of reconstruction increases. When there is a small number  of points at which the displacement field x~ 
is recorded, it is occasionally possible for a phantom mirror image of the crack to appear  with respect 
to the middle surface of the layer, but in this case its sizes is reconstructed correctly. To eliminate the 
phantom solution, either additional information on the field with a larger number  of recording points 
x~ was used or information on the displacement field when the vibration frequency changes in accordance 
with the uniqueness theorem. By taking into account the additional information it was possible to 
eliminate the phantom solution. 

I wish to thank I. V. Baranov for carrying out the calculations. 

This research was supported by the Russian Foundation for Basic Research (02-01-01124) and as 
part  of the "State Support  of Leading Scientific Schools" p rogramme (NSh-2113.2003.1). 

R E F E R E N C E S  

1. PARTON, V. Z. and BORISKOVSKII, V. G., Dynamics of Brittle Fracture. Mashinostroyeniye, Moscow, 1988. 
2. COLTON, D. and KRESS, R., Integral Equation Methods in Scattering Theory. Wiley, New York, 1983. 
3. VATUL'YAN, A. O. and KORENSKII, S. A., The linearization method in geometric inverse problems of the theory of 

elasticity. Prikl. Mat. Mekh., 1997, 61, 639-646. 
4. BUI, H. D., Inverse Problems in the Mechanics of Materials:An Introduction. CRC Press, Boca Raton, FL, 1994. 
5. SANTOSA, E and VOGELIUS, M., A computational algorithm to determine cracks from electrostatic boundary 

measurements. Int. J. Engng Sci., 1991, 29, 8, 917-937. 
6. ANDRIEUX, S. and ABDA, A. B., Identification of planar cracks by complete overdetermined data: inversion formulae. 

Inverse Problems, 1996, 12, 5, 553-563. 
7. BANNOUR, T., ABDA, A. B. and JAOUA, M., A semi-explicit algorithm for the reconstruction of 3D planar cracks. Inverse 

Problems, 1997, 13, 4, 899-917. 
8. ANDRIEUX, S., ABDA, A. B. and JAOUA, M., On the inverse emergent plane crack problem. Math. MethodsAppl. Sci., 

1998, 21, 10, 895-906. 
9. ALVES, C. J. S. and HA DUONG, T., On inverse scattering by screens. Inverse Problems, 1997, 13, 5, 1161-1176. 

10. KRESS, R., Inverse elastic scattering from a crack. Inverse Problems, 1996, 12, 5, 667~84. 
11. ALVES C. J. S. and HA DUONG, T., Inverse scattering for elastic plane cracks. Inverse Problems, 1999, 15, 1, 91-97. 
12. WEIKL, W., ANDRA, H. and SCHNACK, E., An alternating iterative algorithm for the reconstruction of internal cracks 

in a three-dimensional solid body. Inverse Problems, 2001, 17, 6, 1957-1975. 



170 A.O. Vatul'yan 

13. BABESHKO, V. A., Bodies with inhomogeneities; the case of collections of cracks. Dokl. Akad. Nauk, 2000, 373, 2, 191-193. 
14. VATUL'YAN, A. O., VOROVICH, I. I. and SOLOV'EV, A. N., A class of boundary-value problems in the dynamic theory 

of elasticity. PrikI. Mat. Mekh., 2000, 64, 3, 373-380. 
15. HORMANDER, L., The Analysis of Linear Differential Operators, Vol. 2. Springer, Berlin, 1983. 
16. LANDAU, L. D. and LIFSHITS, Ye. M., TheoreticalPhysics VoL 7., Theory of Elasticity. Nauka, Moscow, 1965. 
17. VATUL'YAN, A. O. and KRASNIKOV, V. V., Vibrations of an orthotropic half-plane with a curvilinear crack. Izv. Ross. 

Akad. Nauk. MTT, 2002, 5, 83-90. 
18. BELOTSERKOVSKII, S. M. and LIFANOV, I. K., Numerical Methods in Singular Integral Equations and their Application 

in Aerodynamics, the Theory of Elasticity and Electrodynamics. Nauka, Moscow, 1985. 
19. TIKHONOV, A. N. and ARSENIN, V. Ya., Methods for Solving Ill-posed Problems. Nauka, Moscow, 1979. 
20. VOROVICH. I. I. and BABESHKO, V. A., Dynamic Mixed Problems of the Theory of Elasticity for Non-classical Regions. 

Nauka, Moscow, 1979. 
21. VATUEYAN, A. O., BARANOV, I. V. and GUSEVA, I. A., The identification of a crack-like defect in an orthotropic layer. 

Defektoskopiya, 2001, 10, 48-52. 

Translated by ES.C. 


